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Overview:

1 Sample of my work: Computational

Complexity and Phase Transitions

2 Proposed work with PARC: structural

parameters for \small-world networks"

{ De�nitions and discussions.

{ Preliminary result: routing in small-world

networks

3 Possible sources for structural parameters

{ geometric embeddings of graphs

{ tree-like decompositions



Can you predict whether a class of instances

of a combinatorial problem is \easy/hard" ?

Computational Complexity: P/NP-complete.

Criticism: Pessimistic, worst-case theory.

Can one say something better than \hard in

the worst case" ?

Example: 3-SAT:

Clause: x1 _ x3 _ x7.

Formula: Conjunction of clauses.

To decide: Is the formula satis�able ?

NP-complete, hence \hard" in the worst case.

Random model: c =#clauses=#variables.







Survey up to 1996: Huberman, Hogg and
Williams, \Arti�cial Intelligence" vol. 81

Cheeseman, Kanefsky and Taylor:
"The results reported above suggest the fol-

lowing conjecture: All NP-complete problems
have at least one order parameter and the hard

to solve problems are around a critical value
[..]. This critical value (a phase transition)

[...] The converse conjecture is P problems do
not contain a phase transition".

\fashionable nonsense".
Imprecise. What is an \order parameter" ?

\Canonical" property: monotonicity. With
this interpretation: false (Erd}os and R�enyi).

Reason: Phase transitions are insensitive to

changes on a set of instances \of measure
zero". Worst-case complexity is not.



Any connection between computational

complexity and phase transitions ? Reason:

problems constructed in the above statement

are \arti�cial". Maybe the situation is better

for \natural" problems.

Similar: Computational Complexity: satis�a-

bility problems are either in P or NP-complete

(Schaefer,1978). Additional reason: all

tractable cases from Schaefer's theorem have

phase transitions that can be rigorously deter-

mined.

My work: classi�cation of thresholds for the

(clausal) subset of Schaefer's framework.



Clause template:

Ca;b : x1 _ : : : xa _ xa+1 _ : : : _ xa+b.

Examples:

Ca;0 = x1 _ : : : xa, C0;b = x1 _ : : : _ xb

S: �nite set of clause templates.

SAT(S): allow clauses whose templates are in

S.

Random model: m clauses, chosen uniformly

at random, with repetition among those

available.

Result: classi�cation of satis�ability problems

with a sharp/coarse threshold. Exact

statement in the paper (15th I.E.E.E.

Conference on Computational Complexity).



Interpretation:

If SAT(S) has a coarse threshold then the fol-

lowing \trivial" procedure works with proba-

bility 1� o(1) everywhere outside the \critical

region". Even in the critical region its success

probability is (at least some) constant !

if 0n or 1n satisfy �

then � is satisfiable

else

declare � unsatisfiable.

Contrast: (new result) if SAT(S) has a sharp

threshold then All Davis-Putnam algorithms

provably need exponential time on the average

at the critical point.



Conclusion: In the case I study the lack

of a phase transition does have algorithmic

implications !

Caveats:

{ the (combined) result is weaker than it might

seem.

{ the general case is more subtle

{ ... however this is the �rst rigorous result

that supports the existence of such connec-

tion. A more precise account is an exciting

open question.



Milgrom (1957): sent letters between people

in Nebraska and Massachusets and computed

average number of hops.

Watts and Strogatz (Nature):power grid of

Western U.S. is \locally dense" but is sparse,

and has small diameter.

Flurry of work on \random graph models of

small-world networks".

Web is \small-world" (Adamic, however see

also Broder et. al. )

Ingredients: mixture of \ordered" and \ran-

dom" structure.

What is \ordered" ?: not clear. Sometimes

clique, sometimes lattice.



Kleinberg (Nature, 2000): random graph mod-

els do not capture the algorithmic aspect of

e�cient online search.

Model: 2-d lattice with \long range connec-

tions".

long-range connections: one (constantly

many).

distribution: power-law, characterized by

exponent r.

P (u) v) � D(u; v)�r.





\Practical" motivation: routing in (ad-hoc)

communication networks. Routing algorithms

that use geographic information but no rout-

ing tables. GPSR (Hong and Karp, MOBI-

COM 2000), SORSRER (Barrett et al. LANL

2000).

Hot-potato routing: no packet is ever bu�ered.

Everything is passed along.

Model: at each step, at each node indepen-

dently, a new packet is injected with probability

�=n. Random destination.

Measure average time a packet stays in the

network.

Grid: Broder, Frieze, Upfal (STOC 1996).

Result: r = 2 again O(log2 n). Otherwise

n
(1).



Thesis: one needs to look for \struc-

tural" parameters that explain the algorithmic

(tractability) properties of \small-world net-

works".

Analogy: random walk on graphs. Conduc-

tance ) rapid mixing.

Second analogy: Quasi-random graphs (Alon,

Erd}os, Spencer 1992) are single graphs whose

properties mirror many of the properties of

random graphs.

Possible directions: geometric embeddings and

tree-like decompositions.



Geometric embedding: initially see a graph as

a relational structure. It induces a graph dis-

tance dG.

Embedding: mapping � : V (G) ! M , (M;d)

metric space such that dG(x; y) � dM(x; y).

Dilation of an embedding:

c� =max
x6=y

dM(x; y)

dG(x; y)
:

Lattice graphs: embedded into (R2; l1) with

dilation 1. Optimal search (since geometric

and graph distance coincide).



Heuristic: small dilation (+ other structural

properties) ) geometric and graph distances

correlate fairly well ) e�cient search.

Kleinberg's result:

0 < r < 2 \small-world" (small diameter).

Consequently high dilation.

2 < r < 1 \the lattice takes over". E�cient

(in the shortest path length) online search.

Conclusion: r = 2 is a phase transition in dila-

tion.

General embedded graphs that support e�-

cient search ?Some results, not yet satisfactory

form.



Tree-decompositions:

Motivation: many hard problems are easy for

trees. Tree-like decompositions: A.I. and Pa-

rameterized Complexity.

Treewidth k:



Implicit constraints imply that \natural"

graphs have small treewidth.

{ Control-
ow graphs arising from structured

programming languages have treewidth � 10

(Thorup).

{ Dependency graphs arising from N.L.P. have

bounded treewidth under a plausible cognitive

model of language understanding (K�ornai and

Tuza, 1992).



Why treewidth might be relevant to social net-

works ?

Model of citation: simple approximation. The

references of a new paper are all \related".

Semantic graph: metric embedding. All cited

papers are \close" (clique).

Useful approximation: there is an upper bound

on the number of references in a single paper.

Conclusion: the (semantic version of the) ci-

tation graph has bounded treewidth !



Other possible work: graph topology and the

dynamics of multi-agent systems.

Related work: Peyton-Young (1999), Axtell

(2000).

Pavlov rule for Iterated Prisoner's Dilemma:

{ Graph G, labels from �1.

{ choice: random pair.

{ xi and xj replaced by xixj.

{ cooperation: unique stable state.

{ Emergence of cooperation

{ O(nlogn) steps on cycles, exponential on

complete graph (Dyer, Goldberg, Greenhill, Is-

trate, Jerrum 2000).

{ polynomial on lattices.

What about small-world networks ? More im-

portantly, why ?


